Measuring Trigger Efficiency

- Important component of cross section measurement: it is NOT in general 1.0!
- Need to measure this from data because trigger hardware is not emulated perfectly in software

 We will see this depends on the analysis in question (by my definition)

Three-level trigger schematic

J. Nielsen

Trigger towers / Regions of Interest

- LVL1 uses trigger towers of size 0.1 x 0.1
 - Combines multiple EM cal towers
 - Passes a Rol to the LVL2 algorithms with similar resolution
- LVL2 uses fine segmentation 0.025 x 0.0245
 - Shower shape calculations
 - Tracking information
- See also ATL-DAQ-2000-002 "Selection of high-pT electromagnetic clusters by the level-2 trigger of ATLAS," by Saul Gonzalez et al.

Specific LVL1 shower criteria

- Electron E_T in 1x2 trigger tower > 25 GeV
- Electromagnetic ring isolation (in 12 towers around 2x2 core) < 3 GeV
- Hadronic core leakage (in 2x2 towers behind EM cal) < 2 GeV
- Hadronic ring isolation (in 12 towers around 2x2 core) < 2 GeV

Specific LVL2 shower criteria

- Hadronic leakage: EM showers deposit little energy in the Had Cal. 2.5% or less
- Lateral shower shape 3x7 compared to 7x7: ratio >0.90
- Lateral width: variance of the 3x5 cell block
- Energy difference between two maxima in first ecal sample: this gets rid of jets with π^0 decays
 - energy in second maximum
- Total shower width relative to first energy maximum

Trigger Efficiency Definition

- Measured with respect to offline reconstruction. Why?
- $N = \sigma \times \epsilon_{trig} \times \epsilon_{reco} \times L$
- So L1 eff = N(pass L1) / N(reco)
- L2 eff = N(pass L1 && pass L2) / N(reco)
- There is at least one alternative to this definition...

Ensuring Real Electrons

- Electrons in inclusive stream come from W/Z production but also include fakes!
- Trigger efficiency measurement requires a reliable source of clean electrons. Why?
 - Note that any "electron" would do <u>as long as</u> its shower shape and isolation characteristics are same as for true electrons -- this is unlikely
- Tight electron requirements and Z mass selection ensure we are dealing with true electrons

Trigger Hypothesis

- Trigger algorithm which checks for a certain signature: e, γ, jet
- TrigT1EMHypo, TrigL2CaloHypo, TrigL2IDCaloHypo, TrigEFEgammaHypo
 - L1 (calo-based): calo energy, isolation
 - L2 (calo): shower shape, energy isolation in cone
 - L2 (track): match to L2 ID track
 - EF: nearly the same as offline requirements

Global Trigger Decision

 After rerunning the trigger hypotheses, trigger decision is in StoreGate under key "MyTriggerDecision" (or "MyTriggerDecision+")

Parsing the Trigger Decision

- Trigger decision is packed into a word which needs to be parsed
 - Check that your trigger is defined in the current table
 - Then check that the event passes the trigger
 - Otherwise snap out of the event

```
// check trigger status before continuing
if (! (trigDec->isDefined("L2_e25i", 2)
    && trigDec->isTriggered("L2_e25i")) )
   return StatusCode::SUCCESS;
```

Will be interesting to compare this with the EventHeader bits

Trigger Objects

- L1EMTauObject
 - HdCore, EmCore, HdIsol, EmIsol
- TriggerElectron (L2)
 - Links to associated cluster and track

Retrieving Trigger Objects

J. Nielsen

"Tag and Probe" Method

- Trigger on one electron ("tag") and measure efficiency to trigger on the second electron ("probe"). Why not use just one electron?
 - Biased trigger efficiency (you need at least one trigger electron!)

 Alternative is to use backup (calibration) trigger paths which pass events through without biasing selection

Trigger Efficiency Derivation

Based on counting number of events, not electrons!

Specify number of single-trigger object (M. Flowerdew)

Case A: electrons in different bins

$$\epsilon = N_2/N_1$$

Case B: electrons in the same bin

$$\epsilon = 2N_2/(N_1 + N_2)$$

Total efficiency is then:

$$\epsilon = \frac{N_2^A + 2N_2^B}{N_1^A + N_1^B + N_2^B} = \frac{N_2^A + 2N_2^B}{N_T}$$

Analysis Strategy

- Select events on e25i trigger
- Find good Z candidates using 2 electrons of opposite charge and reasonable mass cut
- Match reconstructed electrons to Level 2 trigger objects
- Check if matched trigger objects satisfy the trigger requirements
- Calculate efficiency as function of E_T, η, φ

Expect something like 97% at L1, 95% at L2, 94% at EF